The receptor potential in type I and type II vestibular system hair cells: a model analysis.
نویسندگان
چکیده
Several studies have shown that type I hair cells present a large outward rectifying potassium current (g(K,L)) that is substantially activated at the resting potential, greatly reducing cell input resistance and voltage gain. In fact, mechanoelectrical transducer currents seem not to be large enough to depolarize type I hair cells to produce neurotransmitter release. Also, the strongly nonlinear transducer currents and the limited voltage oscillations found in some hair cells did not account for the bidirectionality of response in hair cell systems. We developed a model based in the analysis of nonlinear Goldman-Hodgkin-Katz equations to calculate the hair cell receptor potential and ionic movements produced by transducer current activation. Type I hair cells displaying the large g(K,L) current were found to produce small receptor potentials (3-13.8 mV) in response to mechanoelectrical transducer current input. In contrast, type II cells that lack g(K,L) produced receptor potentials of about 30 mV. Properties of basolateral ionic conductances in type II hair cells will linearize hair bundle displacement to receptor potential relationship. The voltage to obtain the half maximal activation of g(K,L) significantly affects the resting membrane potential, the amplitude, and the linearity of the receptor potential. Electrodiffusion equations were also used to analyze ionic changes in the intercellular space between type I hair cell and calyx endings. Significant K(+) accumulation could take place at the intercellular space depending on calyx structure.
منابع مشابه
Recombinant Expression of the Non-glycosylated Extracellular Domain of Human Transforming Growth Factorβ Type II Receptor Using the Baculovirus Expression System in Sf21 Insect Cells
Transforming growth factor beta (TGFβ1, β2, and β3) are 25 kDa disulfide-linked homodimers that regulate many aspects of cellular functions, consist of proliferation, differentiation, adhesion and extracellular matrix formation. TGFβs mediate their biological activities by binding of growth factor ligand to two related, functionally distinct, single-pass transmembrane receptor kinases, known as...
متن کاملSupporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice
Vestibular hair cells in the inner ear encode head movements and mediate the sense of balance. These cells undergo cell death and replacement (turnover) throughout life in non-mammalian vertebrates. However, there is no definitive evidence that this process occurs in mammals. We used fate-mapping and other methods to demonstrate that utricular type II vestibular hair cells undergo turnover in a...
متن کاملDifferences between stereocilia numbers on type I and type II vestibular hair cells.
A major outstanding goal of vestibular neuroscience is to understand the distinctive functional roles of type I and type II hair cells. One important question is whether these two hair cell types differ in bundle structure. To address this, we have developed methods to characterize stereocilia numbers on identified type I and type II hair cells in the utricle of a turtle, Trachemys scripta. Our...
متن کاملPeripheral vestibular pathology in Mondini dysplasia.
OBJECTIVES/HYPOTHESIS In this study, our objective was to histopathologically analyze the peripheral vestibular system in patients with Mondini dysplasia. STUDY DESIGN Comparative human temporal bone study. METHODS We assessed the sensory epithelium of the human vestibular system with a focus on the number of type I and type II hair cells, as well as the total number of hair cells. We compa...
متن کاملInduction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System
Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hearing research
دوره 165 1-2 شماره
صفحات -
تاریخ انتشار 2002